
Hexi 1.1 Documentation
Part 1

by

Gary Bollenbach
October 26, 2021

�2

Introduction . 3
Installation . 4
Obtaining and preparing a surface mesh 5
Running Robust Pure Hex Meshing 8
Comments on minimum Scaled Jacobian value. 13
Improvement demo . 14
Validity check . 15
Licensing . 16
References . 18
Appendix A: Building RPHM 19
Appendix B: Troubleshooting. 21
Appendix C: Feature Files from Known Examples. Part 2
Appendix D: Feature Files from Original Examples Part 3
Appendix E: Twenty tips for Blender 2.79 Part 3
Appendix F: Test computer specifications Part 3

Text that is highlighted conforms with Outline or Bookmarks listed in the dropdown at
page top (when viewing online). See symbol:

or

�3

Welcome to Hexi, a toolchain for obtaining
hexahedral mesh. In 2019, a significant
academic paper was published, Ref [1],
hereafter referred to as the Paper. The
Paper's authors chose to make the enabling
code available to the public, and Hexi
makes use of the project's prime
executable. Thanks to the Paper's authors
for their generosity.

Perhaps the first question that needs to be addressed is computation time. At the
time this document was created, supplemental resources of the Paper project were
available, including a directory of sample meshes, along with their hexahedral
analogs, and execution timings. These ranged from 'bone' at 3.25 min to
'red_circular_box' at 1193 min. Creation of hexahedral mesh requires CPU power, and
time.

Platform-specific notes:

Docker. Presently the preferred platform. It runs the fastest, and can reside as a
client application on the newest OS, taking advantage of recent kernel advances,
while meanwhile retaining the ability to operate old software. Docker is really the
only option with reasonable performance at the moment. (The readme file in the
Docker folder has instructions for downloading the Hexi executable in Docker
format.)

Linux. A stable option. For those used to interacting with Linux, a familiar
interface, though far slower than Docker.

Windows. The Sample Mesh comparison table in Part 3 testifies that Windows
partnered with Docker (on a virtual machine) is the best combination, numerically,
at present, of those combinations tested.

Introduction

�4

The default desktop password for Hexi is hexi.

Hexi ships with display resolution set up for 3200 X 1800. This resolution is possible
because of an installed Nvidia control package. Whatever graphic display hardware is
installed, it is assumed that Whisker menu setting adjustments will be available and
accessible, to adapt the display parameters as required.

Whisker menu

�5

Obtaining and preparing a surface mesh

At the top of the first page of the Paper
are shown two examples, the one on the
right designated as ‘cheese4’ in the
supplemental materials. These two examples
showcase the abilities of RPHM well,
demonstrating that even a mesh model with a
starting edge ratio of 70.7, like
‘cheese4’, can be used as input for the
creation of a well-proportioned hexahedral
mesh. Mesh models which contain sharp
edges, a category which includes most
models of interest, are normally run with a
Feature file. The subject of Feature files
is covered in Part 2 of the docs. For mesh
models which do not require a Feature file,
or even those that do, it is sometimes
useful to remesh, a process of rebuilding
to make the surface triangles more uniform.
The all-inclusive version of Hexi includes
five programs which can be used for
remeshing: Netgen, Ref [3], Meshlab, Ref
[4], GTK-Remesher, Ref [5], OpenFlipper,
Ref [6], and mmgs, Ref [7]. I will use
Netgen, which I think is the easiest to
handle.

Before I can remesh, I must first have a
mesh. At right is shown a pierced cube
created in Blender. It will serve as the
model for the mesh to be made and processed
in the demo. As you can surmise, it is a
surface mesh composed of all triangles.

�6

Getting the mesh into Netgen. Netgen needs to
have an .stl file to open. Netgen can usually
read exported .stl files of reasonable quality
from Blender provided that they are in ASCII
format. Otherwise, .stl output from Paraview is
normally reliable.

Once imported into Netgen, I open the mesh
options menu. In the first tab of the menu, the
Last Step option needs to be set to Optimize
Surface, so that only a surface mesh will be
generated.

The Mesh Size tab is the one with the critical
effect. The max mesh-size and min mesh-size
fields regulate not only the density of the
elements, but also, I suspect, the
approximation to equilaterality. Following this
guess, I set the max and min close together.
And choose the smallest mesh-size grading.

Based on personal testing, I believe that the
single option of line length equals or exceeds
the quality of output achieved by including
several parameters.

�7

Netgen puts out a nice looking mesh. To
see how good the quality actually is, I
need to take it into Paraview, Ref [9].

In Paraview, I import the .stl output
file from Netgen. Note that it is
necessary to press the green Apply
button to view an opened item. The first
time the Mesh Quality filter is used, it
has to be selected from the alphabetical
list; thereafter it will be located
under Recent. The drop-down box for
triangle quality must be opened and
Scaled Jacobian selected. Then pressing
Apply followed by Quality > Show and
(always, by habit) Rescale, gives the
view shown at right.

The quality level shown here is
excellent for most jobs, and in Part 3
are shown some cases where a much lower
Scaled Jacobian is found to be
acceptable.

�8

Running Robust Pure Hex Meshing

Char Type Switch descrip Descrip from src Default value or speculative

“-h”
“--h”

Print this message
and exit

“--ch” TEXT functionality choice Seems to expect “GRID”

“--in” TEXT Input mesh Filename including extension

“--out” TEXT Output mesh Filename including extension

“--o” UINT Octree meshing bool octree = true 1

“--n” INT num-cells for voxel
meshing

skip for octree

“--h” FLOAT Hausdorff_ratio_t default = 0.005 paper = “epsilon”; regulates strictness of
conformity to input boundary; larger
number -> fewer cells

“--e” FLOAT edge_length_ratio l (as in “log”) paper = “l”, i.e. “ell’; accepted range ->
14.0 to 30.0, though with some models a
lower value than 14.0 can be used;
larger number -> fewer cells

“--w” FLOAT weight_opt double weight opt = 1 Optional switch; the --fw switch is
recognized whether the --w switch is set
or not.

“--fw” FLOAT feature_weight_opt double
LAMDA_FEATURE_PROJECTION
= MESHRATIO*args.feature_weight;
default = 0.05

regulates strictness of conformity to edge
definition; larger number -> tighter
adherence to edge lines

“--r” UINT bounding box style bool pca_oobb = true default = 1; refers to “principal
component analysis -- optimal oriented
bounding box”; an accepted standard

“--s” INT scaffold_type int scaffold type = 1; types:
1.box scaffold free boundary; 2.
layered scaffold free boundary; 3.
box scaffold fixed boundary; 4.
layered scaffold fixed boundary

The default appears to be faster;
however, if it produces drop-outs or
incomplete edges, try --s 2.

“--f” UINT Hard_Feature Feature file is recognized whether this
switch is set or not. Either it places
special emphasis on edge definition, or it
is redundant.

“--Iter” INT optimization
Iteration_Base

default = 3; capital ‘I’ as in India larger than default is low cost in terms of
time added; does not increase detail but
can raise quality level; can be used in
lieu of Hausdorff

�9

RobustPureHexMeshing, the core of Hexi, is a console application, at least as I built
it. It has the thirteen switches shown above. I do not pretend to understand very much
about the significance or range of the switch settings, but some deductions can be made
by looking at the Paper and its source code. The application is split into two basic
operational paths: one for conformance mesh, and one for voxelization. The voxelization
(producing a mesh bounded by cubic surfaces) is useful because it speeds calculations
in fields such as Computational Fluid Dynamics. For my own purposes, traditional
conformance mesh is the path that holds primary interest.

A typical command to start RPHM might look like:

./RobustPureHexMeshing ––ch GRID ––o 1 ––in infile.obj ––out outfile.vtk ––e 21.0 ––f 1 ––fw 0.1 ––h 0.003

The minimum command would specify only the first five entities, up to and including the
output file name.

Comments on the console log:

1. Immediately after a run begins, RPHM ascertains whether the input file is a manifold
mesh. If not it halts with a message. (Resources for inspecting a .stl protofile, such
as are found in Blender, are a good place to try to make repairs.)

2. Next the program needs to generate a node map of the mesh. The projected number of
cells as estimated by the process can be seen to gradually increase until a
satisfactory map is found. If six tries are not enough to generate the map, RPHM
restarts the search. It is possible for certain characteristics of an input mesh to
cause an infinite loop of restarts. After an unsuccessful setup spanning many restarts,
it may be best to quit and reconfigure the model in some way.

3. Following the node map section is the curve map test. The first curve map
examination line in the log serves to judge the compatibility of the Feature file, if
present, with the mapping algorithm. If information about line lengths is printed
immediately after the curve mapping test line, it means that the Feature file is
satisfactory. If the Feature file is unsatisfactory, the program crashes with a
segmentation fault, and the Feature file must be altered (or omitted).

4. Beyond the node and curve mapping tasks comes the patch creation phase. The "patch
matched!" announcement appears in the log, and RPHM proceeds to begin building a hex
mesh, in a work routine which creates a network of trial hexahedra. At an individual
level or on a larger scale, intermediate construction is evaluated for energy level. In
mesh parlance, a high energy level is undesired, and iterative action is taken to
reduce it. A normal log sequence would be a series of lines showing a reducing trend,
such as:

�10

energy at iter: 0 :6.91265
energy at iter: 1 :6.8054
energy at iter: 2 :6.7831
energy at iter: 0 :7.53747
energy at iter: 1 :7.08908
energy at iter: 2 :7.02169
energy at iter: 0 :8.01082
energy at iter: 1 :7.6517
energy at iter: 2 :7.54321
energy at iter: 0 :7.3993
energy at iter: 1 :7.33538
energy at iter: 2 :7.31308
energy at iter: 0 :7.27272
energy at iter: 1 :7.25253
energy at iter: 2 :7.2333

The overall process of creating a collection of cells with desirable attributes seems
to repeat in a cyclical manner, but on an obscure scale and with uncertain interval,
sometimes seeming to start over at the beginning.

In some cases, well into the run, the program encounters a situation where the energy
is not reduced, even minutely, using the available algorithms, and after 15 or 20
identical iterations the program resorts to a complete restart. This situation presages
an anticipated boost in estimated element count in the next developing loop, sometimes
a large increase. Escalation of numbers shown on the V H log lines to over a million, a
not infrequent occurrence, has so far spelled certain doom for any run in which it
appears.

At the completion of a successful run, there is a closing pair of lines in the log
which include the time spent by RPHM on the job, similar to the following:

done. (took 164438689 ms, END MESHING)
TIMING: 164438689ms

�11

Above is seen an output mesh based on the triangular mesh described above. One of the
command switches used is ––h 0.0035, which calls for a 0.0035 Hausdorff setting.
Although the mesh does not look too bad, notice that the edge which bounds the
penetration is rounded. This is because the Hausdorff setting was the only device used
to monitor the shape of the edges.

�12

At this point I will mention the
inclusion in the mesh of hard
feature information. The Paper
discusses two classes of features:
soft and hard. Soft features are
those defined by starting and ending
vertices, where the location of
intermediate vertices are
interpolated algorithmically. Hard
(or sharp) features are those edges
which must be incorporated into the
final mesh either complete or with
only linear divisions.

In the pic right the superior
handling of the chamfer areas, with
defined hard features, may be
compared with the semi-radius
treatment seen on p. 11.

The pic right suggests that there
may be some sacrifice in minimum
Scaled Jacobian quality level when
hard features are included. (The
average Scaled Jacobian in this case
is 0.829.)

For information on creating Feature
files, refer to Appendix C.

�13

Comments on minimum Scaled Jacobian value

1. Ref [10] is a paper exploring the influence which various quality indicators of
the Verdict standard, Ref [11], have on the accuracy of finite element results in a
few major categories of FEA problems. It is a statistical study which has as one of
its main take-home points the conclusion that minimum Scaled Jacobian quality in a
mesh correlates poorly with accurate finite element performance. Of much greater
importance is the average Scaled Jacobian quality level of the whole mesh. The
average Scaled Jacobian of the test mesh described here is 0.877, an impressive
achievement for RPHM. Viewed from the standpoint of Ref [10], there is an implied
prediction that the mesh will perform reliably as-is, without attempts at
improvement. In considering how far to apply this viewpoint, weighing the caveats put
forward in Ref [10] may be advisable.

2. A specific device for eliminating the possible significance of element quality
level in a given problem is through adaptive p-refinement (or hp-refinement) of the
mesh. The packages associated with Ref [18], PolyFEM, and [20], the deal.II finite
element library, both open source, make this method available.

3. A third relevant procedure is the outcome of Ref [19]. The executable in question,
complex_simplification, rebuilds the input mesh from basic topological principles.
Currently the usage of this app within these docs is limited to the heat exchanger
head example in Part 3. The following section describes how to acquire and build this
freely available resource.

�14

Improvement demo

Some comments about the Ref [19] project,
Robust-Hexahedral-Re-Meshing. It is easy to
build the repository on Windows 10. It is
only necessary to make sure that CMake is
in the environment path (taken care of
while CMake is installing), and that at
least one Hello-World-type project
with .sln has been constructed on Visual
Studio. Using VS2019, the first step is to
clone the repository, as shown in the pic
right. After the clone process has
completed, a glance at the bottom tab bar
in the main left panel shows the first tab
as ‘Solution Explorer’. After this tab is
selected, the panel changes to contain a
list of 31 .sln files. Also reconfigured is
the menu bar at the top of the interface,
in which a Build menu is now available. The
Build All process should be launched. The
resulting executable,
complex_simplification, should be built in
Release mode as well as Debug. Both
processes should finish without errors, and
the folder ..\out\build\x64-Release should
contain an executable.

�15

Validity check

Sometimes elements with an acceptable Scaled Jacobian can have contorted geometry. As
a final test it is a good idea to do a validity check of the mesh, using the test that
is described in Refs [15] and [16]. The method seems particularly thorough. It is very
easy to apply also, because it has been incorporated into the Gmsh application, Ref
[17]. The pic below shows how to access the results from the Gmsh interface.

To perform the test, you merely have to load a mesh into Gmsh, then execute the very
first of the plugins, in the path Tools > Plugins > AnalyseMeshQuality. In the output,
the critical line for the example mesh I am working with here is the one that says:

Info: minJ/maxJ = 0.0148, 0.674, 1 (worst, avg, best)

Since all signs are positive, it means that all elements in the mesh are valid.

To view test results, pull up on interface (LMB drag) here
after test completion

�16

The Hexi project makes use of source code which is subject to open source licensing.
The following sections are applicable:

I. Feature-Preserving-Octree-Hex-Meshing-master

Refers to the principal code within Hexi, comprising both source and binary. The
following list of licenses corresponds to copies of the documents themselves in
the /home/hexi/Licenses subdirectory:

1. 2-Clause_BSD_License
2. 3-Clause_BSD_License
3. Apache_License_v2.0
4. Creative_Commons_Legal_Code_License
5. GNU_Affero_General_Public_License_v.3
6. GNU_General_Public_License_v2.1
7. GNU_General_Public_License_v3.0
8. Mozilla_Public_License_v2.0
9. OpenGL_Extension_Wrangler_Library_License
10. The_AntTweakBar_License
11. The_Eigen-Intel-MKL_License
12. The_Freeglut_License
13. The_imgui-lua-bindings_License
14. The_Khronos-Valve-LunarG_License
15. The_LLVM_Release_License
16. The_MIT_License
17. The_SIL_Open_Font_License_v1.1
18. The_stb_truetype_License
19. The_Wenzel_Jakob_License
20. The_Zlib_License
21. Zero_Clause_BSD_License
22. The_Minpack_License
23. The_Google_License
24. Not used
25. The_Kronos_License
26. The_Sandia_License
27. The_Geogram_License
28. The_HLBFGS_License
29. The_LUA_License

As a locating tool, the numbering in the list refers to occurrences tracked in the
file RPHM-licenses.gnumeric.

Licensing

�17

II. Mesquite

Refers to the mesh improvement application, present in Hexi as both source and binary.
All Mesquite source files are subject to the GNU General Public License, version 3, a
copy of which resides in its corresponding folder in the /home/hexi/Licenses
subdirectory.

�18

References

[1] Gao, X., Shen, H., Panozzo, D. (2019). Feature Preserving Octree-Based Hexahedral
Meshing. Eurographics Symposium on Geometry Processing, Volume 38, Number 5 [Document]
[2] Baum, D., Dupoux, F. (2020). QT-FSArchiver Live-ff-64-0.8.5-18 [Computer software]
[3] Schöberl, J. (1997). NETGEN - An advancing front 2D/3D-mesh generator based on
abstract rules. Computing and Visualization in Science, 1 (1), pages 41-52 [Document]
[4] Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., Ranzuglia,
G. (2008). MeshLab: an Open-Source Mesh Processing Tool. Sixth Eurographics Italian
Chapter Conference, pages 129-136 [Document]
[5] Furhman, S., Ackermann, J., Kalbe, T., Goesele, M. (2010). Direct Resampling for
Isotropic Surface Remeshing. Vision, Modeling, and Visualization [Document]
[6] Möbius, J., Kremer, M., Kobbelt, L. (2013). OpenFlipper - A Highly Modular
Framework for Processing and Visualization of Complex Geometric Models. Sixth Workshop
on Software Engineering and Architectures for Realtime Interactive Systems [Document]
[7] Dobrzynski, C., Frey, P. (2008). Anisotropic Delaunay mesh adaptation for unsteady
simulations. Proceedings of the 17th International Meshing Roundtable [Document]
[8] Stichting Blender Foundation. (2016). Blender 2.79b [Computer software]
[9] Kitware, Inc. (2013). Paraview 4.0.1 [Computer software]
[10] Gao, X., Huang, J., Xu, K., Pan, Z., Deng, Z., Chen, G. (2017). Evaluating Hex-
mesh Quality Metrics via Correlation Analysis. Eurographics Symposium on Geometry
Processing, Volume 36, Number 5 [Document]
[11] Stimpson, C., Ernst, C., Knupp, P., Pébay, P., Thompson, D. (2007). The Verdict
Library Reference Manual [Document]
[12] Bollenbach, G. (2019). Lifted 1.4 [Computer software]
[13] Brewer, M., Diachin, L. A. F., Knupp, P. M., Leurent, T., Melander, D. (2003).
The Mesquite Mesh Quality Improvement Toolkit. Proceedings of the 12th International
Meshing Roundtable, pp. 239–250 [Document].
[14] Bollenbach, G. (2019). Blenbridge 1.20 [Computer software]
[15] Johnen, A., Remacle, J.-C., Geuzaine, C. (2013). Geometrical Validity of
Curvilinear Finite Elements. Journal of Computational Physics 233 [Document]
[16] Johnen, A., Weill, J.-C., Remacle, J.-C. (2017). Robust and Efficient Validation
of the Linear Hexahedral Element. 26th International Meshing Roundtable [Document]
[17] Geuzaine, C., Remacle, J-F. (2017). Gmsh 4.5.6 [Computer software]
[18] Schneider, T., Hu, Y., Dumas, J., Gao, X., Panozzo, D., Zorin, D. (2018).
Decoupling Simulation Accuracy from Mesh Quality. ACM Trans. Graph. 37, 6, Article 280
[Document]
[19] Gao, X., Panozzo, D., Wang, W., Deng, Z., Chen, G. (2017). Robust Structure
Simplification for Hex Re-meshing. ACM Trans. Graph. 36, 6, Article 185 [Document]
[20] Arndt D., Bangerth, W., Davydov, D., Heister, T., Heltai, L., Kronbichler, M.,
Maier, M., Pelteret, J-P., Turcksin, B., Wells, D. (2021). The deal.II finite element
library: design, features, and insights. Computers & Mathematics with Applications,
vol. 81, pages 407-422 [Document]

�19

Appendix A: Building RPHM

The following instructions apply to a clean installation of Mint 17.3, with user name
hexi. It should also work on Ubuntu 14.04 and spinoffs having apt access to GCC 4.8.4.
(Note: the procedure below was tested and found valid on 2021Feb13.)

1.Clean the apt pipeline.

sudo apt update

2. Install a recent CMake. The source stipulates a minimum CMake version of 2.8.11.2,
whereas Mint 17.3 has access to 2.8.12.2, which would be okay, except the old versions
of CMake cannot execute a couple of lines below. So it looks like a newer CMake version
is indicated. However, building CMake from source is very slow. A quicker option:

wget -P /home/hexi/.local \
'https://cmake.org/files/v3.13/cmake-3.13.3-Linux-x86_64.tar.gz'
cd /home/hexi/.local
tar -xf cmake-3.13.3-Linux-x86_64.tar.gz

And to append to the environment path:

export PATH=/home/hexi/.local/cmake-3.13.3-Linux-x86_64/bin:$PATH

3. Install dependencies. This is where GCC 4.8.4 gets installed.

sudo apt install build-essential libgl1-mesa-dev libglu1-mesa-dev libxi-dev \
libsuitesparse-dev libxcursor-dev libxinerama-dev libxrandr-dev

4. Download the source code repository.

wget -P ~/ \
https://github.com/gaoxifeng/Feature-Preserving-Octree-Hex-Meshing/archive/master.zip

5. Go back up one level.

cd ..

6. Extract the compressed source.

unzip master.zip

7. Enter the resulting directory.

cd Feature-Preserving-Octree-Hex-Meshing-master

�20

8. Make a working subdirectory.

mkdir build

9. Go into the new working subdirectory.

cd build

10. Give CMake some orientation.

cmake .. -DCMAKE_INSTALL_PREFIX=/usr

11. Build the executable.

make -j$(nproc)

The new executable, RobustPureHexMeshing, has a size of 12.8 MB.

Windows

The attempt to build RPHM on Windows was successful, using Visual Studio 2019. An
executable was generated. The executable is 30 MB in size, and appears to be fully
functional. In Task Manager the process is shown as hyperthreading, but the CPU usage is
low, and due to this anomaly the efficiency of the executable is questionable.

�21

Appendix B: Troubleshooting

Recapping some troubleshooting events.

1. Non-manifold file. This error was due to a missing face on the input mesh. Easy to
spot, but in some instances even a skilled examination in Blender cannot uncover the
problem. In such a case treating the file as one destined to be exported to .stl is
helpful, and using 3D printing tests and repairs, either in Blender of outside of it,
can sometimes remedy the defects in the mesh.

2. Kahan’s assertion failed in eigen.
 a. This error was due to two slightly mismatched vertices. Hard to spot. In a
Paraview spreadsheet layout, (attribute: Cell Data, column: Cell Type), two quads were
seen to be present. Looking at the location of the quads identified the mismatched
vertices.
 b. The same error arose from a quad on the input mesh where two triangles should
have been. The same diagnostic method was successful.

3. Memory exhausted. This error seems self-explanatory, but in fact seems to be the
message issued in the case of more than one exception condition. If memory use climbs at
a steady pace of a few GB per second or so, eventually equaling or exceeding the amount
available, the bonafide nature of the exhaustion is evident. But if the result is a
sudden failure of the run, with memory to spare, and without the expected gradual
consumption of memory, then the likely cause may a bad input file. In one observed case
some duplicate, spurious edges within a mesh were superimposed on a legitimate set. This
can be difficult to diagnose.

4. Killed. Linux memory management, dealing with borderline insufficiency, elected to
jettison RPHM. This is a well-documented system management strategy.

5. Segmentation fault. Arose early in the run, exhibiting the following log section:
 {{
 Feature Mapping
 node mapping
 curve mapping
 Abnormal program termination: received signal 11 (Segmentation fault)
 }}
Comment: crash caused by a defective Feature file. See Appendix C for information on
Feature files. If an entered set of files can get past the first curve mapping line in
the log, (with max and min line lengths reported), it has a good chance of finishing
execution, barring system problems.

	Title page
	Table of contents
	Introduction
	Obtaining and preparing a surface mesh
	Running Robust Pure Hex Meshing
	Comments on minimum Scaled Jacobian value
	Improvement demo
	Validity check
	Licensing
	References
	Appendix A: Building RPHM
	Appendix B: Troubleshooting

